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We present experimental results on the relaxation dynamics of vesicles subjected to a time-dependent
elongation flow. We observed and characterized a new instability, which results in the formation of higher-
order modes of the vesicle shape (wrinkles), after a switch in the direction of the velocity gradient. This
surprising generation of membrane wrinkles can be explained by the appearance of a negative surface
tension during the vesicle deflation, which tunes itself to alternating stress. Moreover, the formation of
buds in the vesicle membrane was observed in the vicinity of the dynamical transition point.
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Giant unilamellar vesicles, formed by a closed phospho-
lipid bilayer, appear to be a well-defined simplified system
for studying physical aspects of the dynamics of biological
cells. Equilibrium mechanical properties of vesicles are
relatively well understood. The nonequilibrium dynamics
of a vesicle subjected to an external flow received intensive
attention in numerous theoretical [1–5], numerical [6–9],
and experimental [10–15] studies. In a shear flows a ves-
icle exhibits several types of motion—tank treading, tum-
bling, and trembling [12,13] (also called vacillating
breathing [3] or swinging [9] )—depending on its location
in the space of the system control parameters (viscosity
contrast, excess area, shear rate) [5,9,13].

There is, however, a lack of experimental observations
in the regime of transient dynamics when the system
undergoes a nonequilibrium relaxation toward one of its
dynamically stable states. In stationary shear flows only the
lowest order modes (usually just the second order modes)
characterize the various dynamical states of the vesicles
observed, since the energy contribution from higher-order
excitation modes, if present, would be much higher.
However, as pointed out recently [16], a time-dependent
flow may happen to impose a negative surface tension on
the membrane, which leads to the growth of the higher-
order modes and to a shape instability.

Let us consider the Helfrich free energy functional in a
general form [17]:
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Z
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�
�
2
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�
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where � is the bending rigidity of the membrane, h is the
local curvature, and � is the vesicle surface tension, which
is the Lagrange multiplier corresponding to the surface
area conservation constraint. If we consider for simplicity
just a flat membrane, which can be parametrized by a
height function u�x; y�, then the expansion of the functional
F in the Fourier space up to second order in u gives: F�2� �
1
2

P
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4 � �k2�jukj2. One notices that modes uk with k <�������������
j�j=�

p
become unstable for �< 0, resulting in the gen-

eration of the higher-order modes becoming energetically
more favorable. One possibility to experimentally realize a
negative surface tension of the vesicle membrane is the use
of a time-dependent flow, where the sign of the velocity
gradients undergoes a fast change, under which a vesicle
becomes temporarily deflated. The simplest realization of
this idea is a plane elongation (hyperbolic) flow: vx � _�x,
vy � � _�y, vz � 0.

In this Letter, we present the first experimental study of
giant vesicle dynamics in such time-dependent, transient
plane hyperbolic flow. We study the vesicle relaxation
towards a new stationary state in two cases: from an
equilibrium state when the elongation flow is suddenly
turned on, _��t� � H�t� _�0, where H�t� is the Heaviside
step function, and when the elongation flow is suddenly
reversed, _��t� � sgn�t� _�0, i.e., vxx changes from� _�0 to _�0.
The stationary, stretched state is known to obey Dsat ���������������������

15�=32�
p

, with � � f0;�=2g [1,4,16]. Here D � �L�
B�=�L� B�, L and B are the large and small semiaxis of
the elliptical approximation of the vesicle cross section and
� is the inclination angle with respect to the x axis. We
assume that the membrane is impermeable on the time
scale of the experiment, with the excess area � � S=R2 �
4�, where S and R are, respectively, the total surface area
and the effective radius of the vesicle, defined via the
volume V � 4

3�R
3.

Measurements of the vesicle dynamics were conducted
in the vicinity of the stagnation point (vx � vy � vz � 0)
via either epifluorescent or phase contrast microscopy. The
flow was produced in a cross-slot microchannel of 500 �m
wide and 320 �m in height manufactured in elastomer
(PDMS) by soft lithography [18]. The details of the design
and of the arrangement will be published elsewhere.
Particle tracking velocity measurements of the flow field
show that the deviation of the elongation rate �� _��xy= _�
across the size of the observation window is <5%, devia-
tions of _� in the z direction on the scale of the vesicle were
�� _��z= _� < 5%, and that the ratio of shear velocity gradient
_�z to _� on the size of the vesicle did not exceed �� _��z= _�.

Experiments were performed in the range of velocity gra-
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dients _� � 0:05–10. We define the dimensionless strain as
	 � _�
outR

3=�, where � ’ 10�12 erg for DOPC [19]. The
viscosity of the fluid inside the vesicle, 
in, can be different
from the viscosity 
out of the surrounding fluid, and their
ratio � was varied across the experiments. The lipid solu-
tions consisted of 85% DOPC (Sigma) and 15% NBD-PC
(fluorescent lipid, Molecular Probes) dissolved in 9:1 v=v
chloroform-methanol solvent (1.8 mg total lipids=ml) or
DOPC in the solvent (1:5 mg=ml). The methods and con-
ditions of the preparation of the vesicles for the experi-
ments have been described previously [12,13,15].

The first set of the experiments was performed suddenly
switching on the flow, starting after the vesicle had relaxed
into an equilibrium shape. An initial growth of D, mono-
tonic in time until saturation to D � Dsat, was observed,
whereas � reached the stationary value either of 0 or �=2
(see Fig. 1). We characterize the process for D� Dsat by
the linear growth time T� � _���D�t 	

�1. It was found that
T��	� 
 const in the range of 	 � 1–15 for a given �. The
dependence of T� on the viscosity contrast is found to be
linear in the range � � 0:1–7 [see inset Fig. 1(c)].
Averaging is done on the data sets of 30 to 100 points for
each �. These experimental results are consistent with the
recent theoretical predictions for the same relaxation to a
stationary state for 	> 1. The theory too shows that the
relaxation time scales linearly with _� and with � [4,5,16].

In the second set of experiments, in which the flow was
suddenly switched from vxx � � _�0 to vxx � _�0 (‘‘sud-
denly’’ essentially means that the switching time is much
smaller than 	= _�0), vesicles undergo a relaxation from one

stretched stationary state (D � Dsat; � � �=2) to another
one (D � Dsat; � � 0). Surprisingly, we found that above
some value of 	> 	c the vesicles develop small wave-
length perturbations in the shape, which we call wrinkles
[see Fig. 2(a)–2(c)].

We would like to point out that stationary wrinkles on an
elastic microcapsule in shear flow have been already ob-
served [20] and explained [21,22]. Although visually simi-
lar to the ones discussed in this Letter, such wrinkles are a
distinctly different effect: their structure is stationary,
while here it is transient; they appear due to permanent
shear stress, here only after release and switch of elonga-
tion flow; the main reason for the appearance of an insta-
bility is extensional membrane elasticity which sustains
compression there, rather than negative surface tension that
tunes itself to alternating stress here.

Quantitative evaluation of the higher-order modes of the
membrane shape was performed in the following way: the
vesicle contour is fitted by an ellipse and the amplitude
A��; _�0t� of the deviation from the elliptical fit is taken as
function of the angle � for every instant of time (see upper
inset of Fig. 3). Examples of A��; _�0t� are shown in
Fig. 2(d). The instantaneous Fourier transforms of the
amplitudes with respect to � define the dynamics of the
spectrum uk�t�. The temporal evolution of these power
spectra is shown in Fig. 2(e). A difference in the develop-
ment of the higher kmodes for different values of 	 can be
clearly seen: during the transition from one steady state to
another, more higher-order modes are excited for larger 	.
The evolution of D is shown in Fig. 2(f) in order to
precisely define the time interval where the transitional
dynamics takes place.

The dependence of the average in time power spectrum
of the relaxing modes, Pk � jukj2, for different values of
	, is shown in the lower inset of Fig. 3. We found that the
spectra show a Pk / k�4 dependence for 	 less than some
critical value 	c, that is a well-known spectral decay due to
thermal noise [17]. For larger 	, the spectra become rather
flat at smaller k, while the higher modes still comply with
the equilibrium spectral decay. From the rather sharp tran-
sition from the flat to the k�4 spectrum around some k �
kthr, we can postulate that for 	> 	c modes with k < kthr

are generated dynamically via instability from thermal
noise, while the higher modes are excited just thermally.
We determine 	c as the threshold above which the modes
with k � 3 are excited (k � 3 is the first mode higher than
elliptical).

To this extent, we define k� �
�������������������������������������������P19
k�3 k

2Pk=
P19
k�3 Pk

q
.

The restriction to k  19 is dictated by the image resolu-
tion of the smallest vesicles in the experiments. The de-
pendence of k� on 	, averaged over 
 200 data points, is
shown in Fig. 3. For all 	< 	c, k� remains constant, since
all modes in the spectrum with k � 3 obeys the same
equilibrium distribution, k�4. The growth of k� starts at
	 � 	c with 	c � 6:5� 0:8, which is identified as the
onset of the wrinkling instability. The dependence of k�

FIG. 1 (color online). Relaxation dynamics in elongation flow
suddenly turned on. Snapshots of a vesicle with (a) � � 1, 	 �
2:2, � � 0:5, _� � 0:1, (b) � � 1, 	 � 4:4, � � 0:6, _� � 0:9.
Numbers on the snapshots are the nondimensional times t _�; the
scale bar is 10 �m. (c) D vs t _� with � from data in (a), � from
data in (b). Inset: statistical average of T� vs �.
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above the instability threshold is fitted by �	1=4 in a good
agreement with numerical simulations in the same range of
	 [16]. All the experiments were done for � � 1, since we
did not expect critical influence of viscosity contrast on the
wrinkling effect.

As we pointed out in the introduction, the generation of
higher-order modes in the vesicle shape, i.e., wrinkles,
would be penalized by the bending energy increase that
make them improbable for a vesicle with positive surface
tension. On the other hand, a recent theory predicts that a
sudden switch in direction of the velocity gradient, _��t� �
sgn �t� _�0, produces a negative surface tension defined by a
given elongation rate. Then the most unstable higher-order
mode, formally defined above via unknown �, is expressed
via parameters of the problem as k2  	=

����
�
p

, where  is
the numerical factor [16]. Then for the first (k > 2) higher-
order mode k � 3, the theory gives 	c ’ 1:2 at � ’ 0:6,
which corresponds to our average h�ii over the data set in
the transient region. The theoretical value of 	c is of the
same order as the experimental one, and the difference can
be attributed, first, to uncertainty in the value of � taken
and to rather rough estimates based on an isotropic surface
tension [16].

FIG. 3 (color online). k� vs 	. The arrow defines 	c, the onset
of excitation of the mode k � 3. Dashed line is a fit�	1=4 above
the instability threshold. The upper inset illustrates the image
analysis. Lower inset: averaged power spectrum for various 	:
�—2.6; �—24; �—116; dashed lines show a / k�4 depen-
dence.

FIG. 2 (color). Wrinkling instability. Snapshots of vesicle dynamics in time-dependent elongation flow at � � 1, � 
 1, and:
(a) 	 � 8:1, (b) 	 � 81, (c) 	 � 323:5. The scale bar is 20 �m; numbers are t _�. Plots below the images are the data analysis for each
of the cases above: (d) amplitudes A��; t� of higher harmonics vs � and t _� (values in color), (e) jukj2�t� are the instantaneous Fourier
spectra of the amplitudes A��; t� at various t _� (values in color), (f) D�t� vs t _�. Columns exa, exb, exc correspond to the data presented
in rows (a)–(c).
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Another interesting phenomenon observed is the forma-
tion of buds. These could be seen intermittently in the
experiments: sometimes the vesicle surface folds to the
point that it creates the enclosure of a smaller vesicle inside
the main one (Fig. 4). We have not studied this phenome-
non in detail, but some of its features can be described as
follows: the enclosure process is irreversible, the bud scale
is much smaller than the scale of the excited mode corre-
sponding to the given 	, and the phenomenon is mostly
seen in the vicinity of 	c.

To summarize, we presented experimental results about
the relaxation dynamics of vesicles in elongation flows
suddenly switched on or reversed. The most surprising
result of these studies is a new instability that results in
the excitation of higher-order modes, i.e., wrinkles, in the
membrane, during the vesicle relaxation following the
reversal of the velocity gradient. This unexpected genera-
tion of wrinkles suggests that only the appearance of a
negative surface tension during the vesicle deflation due to
compression in the transient can explain the effect. A
recent theory [16] used this physical picture to derive a
criterion for the onset of the instability and the power law
dependence of the average wave number of the higher-
order modes as a function of 	, which are in reasonable
agreement with our experiment.
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FIG. 4 (color online). Formation of buds. (a) 	 � 6:8, � �
0:9; (b) 	 � 179, � � 0:4. The scale bar is 10 �m; numbers are
t _�.
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